MTH 203: Introduction to Groups and Symmetry Homework VII

(Due 02/11/2022)

Problems for submission

1. Show that A_{4} has a unique subgroup H of order 4 , which is normal and isomorphic to the Klein 4-group. Also, determine the group A_{4} / H.
2. Show that for a prime p, an element in S_{n} has order p if and only if its cycle decomposition is a product of commuting p-cycles. Provide a counterexample that shows that this assertion does not hold when p is composite.
3. Show that for $n \geq 3, A_{n}$ is generated by 3 -cycles.

Problems for practice

1. Show that for $n \geq 3$, every element in A_{n} is a product of n-cycles.
2. What is the the largest possible order of an element in S_{n} ? (This is called the Landau number.)
3. Show that a group of order 6 is either isomorphic to C_{6} or S_{3}.
